i 3

Uniled Busine ss Media

}i
Y
\
,|
!_
.

PROGRAMMING LANGUAGES

www.ddj.com The World of Software Development °

'- Cat A Functlonal Stack-Based Lanquaqe

Mo;ax Mobile Ajax Framework
. Getting Better Search Results

" |Is Perl on Its Way Out? Pauldansen Thinks So!

- PARALLEL EXTENSIONS'FOR .NET

¢ . Scott W. Ambler:

- Herb Sutter: /
../.'h’ ”

Core Technology by John Muchow

Mojax: Mobile
Ajax Framework

The best of Ajax on a mobile platform

Mojax, short for “Mobile Ajax,” is a framework that leverages the technologies that make Ajax a

compelling platform for web development (JavaScript, CSS, and XML) and extends them to

John leads devel-
oper relations for
Mojax. He can be
reached at
Jjmuchow@mfoundry.com or
visit his blog at 360Mobile.us.

mobile applications. Mojax applications (moblets) run as native code on a device and are not

limited to the constraints of running within a web browser. Mojax applications support devel-

opment of “plugins” that can access device capabilities such as location services, contacts,

audio, and video.

To get started with Mojax development, go to
mojax.mfoundry.com. Here you will find documenta-
tion, tutorials, and information on how to install an

| Eclipse plug-in that is designed for developing and

within a screen. The Ul elements are defined using
Mojax XML tags; for example:

<moblet default="main">
<screen id="main"
layout="vertical">

testing Mojax applications. <textbox width="100%"
3 £ halign="center">
To show how you can use the Mojax framework, I Hello World!</textbox>
present a sample application that searches for and s /nfgsf::f”

displays real-estate property information. The entire

| application consists of a 212-line source-code file, a

78-line style sheet, and a 36-line XSLT filter. (The com-
plete source code is available online; see “Resource
Center” page 5.)

The sample application is built around the

i Zillow.com API (www.zillow.com), which offers a

comprehensive set of interfaces for accessing real-

"l estate property information. Figure 1 is the Mojax

application I present here. (You get one guess as to

» whose house this is. Hint: The state and the valuation

should give it away.)
When running the application, clicking on the

| Search option lets you specify the street address, city,

and state of the property you want to search for. If the
address that you enter is found, the main screen dis-
plays the updated property information; if the search
fails, a message is returned.

34 Mojax Programming Model
w Like browser-based Ajax applications, the Mojax

== application UI consists of visual elements arranged

30

Dr. Dobb's Journal | www.dd).com | May 2008

With the visual elements defined, you specify var-
ious attributes such as color, borders, and margins
using Cascading Style Sheets (CSS). Example 1
shows one approach for defining CSS content using a
<style> tag. :

The final aspect of developing Mojax applications
is to tie together application logic and the interaction
among visual elements using Mojax script, an imple-
mentation of the ECMAScript-262 Standard (the same
standard JavaScript is based on). While the DOM
objects available to Mojax developers are unique to
the Mojax framework, you will have little trouble with
Mojax if you are familiar with HTML DOM.

User Interface

Listing One generates the sample app’s splash-
screen. There are several things to note about this
listing. First, a <screen> tag is defined and assigned
an ID of splashScreen. This identifier refers to this
screen when it needs to be shown or hidden on the
device display. The layout of contents on the screen

Core Technology

continued from page 30

is a vertical orientation and an <imagebox>
tag shows a banner across the top of the
screen. The remaining content of the
splashscreen are within a <box> tag, which
you can use to further define the layout.
The <textbox> tag defines the message to
be displayed to users while the application
loads.

The second <imagebox> tag displays an
animated progress indicator. Associated
with this tag are two <method> tags—
onShow and onHide. The former is called

MOJAX: MOBILE AJAX FRAMEWORK

when the imagebox (essentially, the splash-
screen) is shown on the device. The work
that needs to be done here is to call the
init() function to initialize the application,
start the animation of the progress indica-
tor, and call the Zillow API through the
pingzillow() method. The onHide method
is called when this screen is no longer visi-
ble on the display, your cue to stop the ani-
mation. (Regarding the GIF image: Mojax
supports JPG, GIE, and Animated GIF files,
even on devices that do not directly support
these file types.)

Intellectuals solve problems.

Geniuses prevent them.

y ."Solutlons" that
only ldentlfy problems

THINK PREVENTION

GET QUALITY

W W w

32 Dr. Dobb's Journal | www.dd).com | May 2008

— Albert Einstein

s PROA

@ © @ ® Programming Rescarch

THE CODING STANQARD EXPERTS

PROGRAMMINGRESEARCH COM

The next screen is the main UI defined
using a <screen> tag mainScreen; see Listing
Two. In Listing One, I created two <method>
tags for managing the onShow and onHide
events. In Listing Two, the events
onLeftSoftkey and onRightSoftkey are
defined inline within the <screen> tag. Either
approach suffices, as the end result is the
same; that is, when some specified event
occurs, perform some action. Generally, I
use the <method> tag when more than one
action is tied to an event.

There is a powerful concept hidden with-
in the <textbox> tags—the ability to work
with dynamic content using bind, which
associates an expression with the value of an
object. In the two textboxes shown, bind dis-
plays the current address, city, and state by
retrieving the current value of Cache.address
and Cache.citystate.

The primary content on the main screen
is contained with a <scrollbox> tag. I use this
tag when the contents of the property infor-
mation returned from Zillow can’t be shown
on one screen. The contents of the scrollbox
are managed in the <propertydetail> tag.

Notice the softkey references (onLeft-
Softkey/onRightSoftkey) and the methods
associated with them. When users select the
left softkey, exit() is called to shut down the
application. When the right softkey is
pressed, the method show() is invoked,

°)
Provided by

7= Zillow.com.

1835 73rd Ave NE
Medina,WA
Year Built: 1994

Finished Sq Ft: 50050
Bedrooms/Baths: 8/19.75
Last Sold Date:

Last Sold Price:

Valuation: 135777184
Exit Search
[e . 3

W ~
=B

Figure 1: Main screen.

passing in the name of the screen to show; in
this case, the search screen.

Styling with CSS

You can use style sheets within Mojax to
define colors, fonts, layout, and other visual
aspects of the application. Style sheets sepa-
rate style elements of an application from
the actual content. Style-sheet information
can be specified in many contexts. Looking
at the definition for mainScreen (Listing
Two), you notice that style attributes are
defined inline within each of the two
textboxes. An additional option is to define
style information using a <style> tag:

<style>
.splashtext {
color: #00008B;
background-color: #FFFFFF;
font-size: large;
font-weight: bold;
font-family: system;

}
</style>

The preferred means for defining style
information is to place all definitions within
a file. For example, the style information for
this application is stored within a file named
“mZillow.mcss.” The code below is a partial
listing of the style information.

textinput {
color: #00008B;

}

textinput:focus {
border-width: 1px;
border-color: #00008B;

}

In this style definition I specify the look
of the <textinput> tag. Pay attention to the
differences in the attributes for a textinput
box and a textinput box with focus. With
this approach, additional code is not
needed in the application to check
whether a textinput box has focus. Instead,
with style sheets, such changes are man-
aged for you by the Mojax runtime. The
aforementioned style attributes are used
within the search screen when prompting
for an address, city, and state, which is
shown in Example 2.

Example 3 is an illustration of accessing
style information through class attributes
within a tag. Notice in Figure 1 that a grid is
displayed with two columns and six rows.
Class attributes are used within the

<moblet default="main">

<style>

screen {
color: #483D8B;
background-color: #DCDCDC;
font-size: medium;

}

</style>

<screen id="main" layout="vertical">
<textbox width="100%" halign="center">Hello World!</textbox>
</screen>
</moblet>

Example 1: Defining CSS content.

<screen id="searchScreen" layout="vertical">

<imagebox url="Images/zillow.gif" width="100%" halign="center"/>

<box height="100%" width="100%" layout="vertical">
<!-- Two textboxes for input -->
<textbox style="padding: 2px;">Enter street address:</textbox>
<textinput length="25" value="bind{Cache.address}"/>
<textbox style="padding: 2px;">Enter city and state:</textbox>
<textinput length="25" value="bind{Cache.citystate}"/>

</box>

</. éc'reen>
Example 2: Search screen code (partial).

.propertylabel {
background-color: #DAE4F6;
padding: 2px;
color: #445681;
border-bottom-width: 1px;
border-bottom-color: #445681;
}
<prototype name="propertydetail" layout="vertical" extends="Box" width="100%">
<gridbox cols="2" rows="6" height="100%" width="100%" layout="horizontal"
valign="top">
<textbox width="100%"
class="propertylabel">Year Built:</textbox>
<textbox width="100%"
class="propertyvalue">bind{propertyXML[0].yearbuilt}</textbox>

</prototype>

Example 3: Accessing class attributes within a tag.

<script><! [CDATA[
function init()

// If no cached value
if (!Cache.address)

// Default to zillow example address
Cache.address = "2114 Bigelow Ave";
Cache.citystate = "Seattle,WA";
}
}

]];é;script>

Example 4: Using Mojax Script.

<prototype name="softkeys" extends="Box" layout="horizontal" width="100%">
<attribute name="left"> '
this.lefttext.value = this.left;
this.lefttext.visible = true;
</attribute>
<attribute name="right">
this.righttext.value = this.right;
this.righttext.visible = true;
</attribute>
<textbox id="lefttext" width="100%" halign="left" visible="false"/>
<textbox id="righttext" width="100%" halign="right" visible="false"/>
</prototype>

Example 5: Extending the Box object.

May 2008 | www.dd).com | Dr. Dobb's Journal 33

Core Technology MoJAX: MOBILE AJAX FRAMEWORK

T —
| Listing One
<screen id="splashScreen" layout="vertical">

<imagebox url="Images/zillow.gif" width="100%" halign="center"/>
<box height="100%" width="100%" layout="vertical" halign="center"

valign="center">
<textbox class="splashtext"
Loading, please wait ...
</textbox>

<imagebox id="splashloading"

<method name="onShow">
init();
this.animate(true);
pingzillow();

</method>

<method name="onHide">
this.animate(false);

width="100%" halign="center" valign="center">

focusable="false" url="Images/loading.gif">

// Initiation application data

// Start animation
// Get property information

// Stop animation

</method>
</imagebox>
</box>
</screen>

' Listing T\No

<screen id="mainScreen" layout=" vertical" onLeftSoftkey="exit()"
onRightSoftkey="show(searchScreen)">

<imagebox url="Images/zillow.gif" width="100%" halign="center"/>

<l-- Show address info across top -->

<textbox layout="vertical" width="100%" halign="center" style="padding: 1px;"

valign="center" value="bind{Cache.address}"/>

<textbox layout="vertical" width="100%" halign="center"
style="padding: 1px; border-bottom-width: 1px; border-bottom color: #00008B;"
valign="center" value="bind{Cache.citystate}"/>

<!=-- Property information -->

<scrollbox width="100%" height="100%" focusable="true" scrollbar="true" >

<propertydetail/>
</scrollbox>
<softkeys left="Exit" right="Search"/>
</screen>
-
. @ [@ v
(/€ 7/4(7,
O did Z, a e ode O O Dd), ed .,
amerger. B b 0 o o
e eip O aredeveiope
d ’ ed e, do € d d O pre erd O € CO e C € O
O 0 ddo, O Qo lidrge ddndad O DIe
a aKke ette q parse es ve ge 0
of code. One 0 OC proje are co 0 0 o e o0 on exce
ona ome ppo apid response fro oa op o o o o
are Qrpordadied O ee U (
o 0 expo
d OR a3 0 0
0 big pro omdo
0 PIO Q o0 O O
D d g 0
0o g d 0
O 0O Pa o0 O g ~._—-=—-~
o or de 0 o T
0 & = g
g 0 O Q ———
S
E:::J B ot s — 1t) =

by ik o
—
Wk sl ey server]

- - -"""‘-"v""""lu -

LT

= i st awery- e - |
Lo syt . (o

Hgﬁ;qnﬂ il

..--;l [E——— _n3~1 | -

— /
U B o il
e \ re—
ot \."‘ B () [P e
- N2 -
e — - —_— e —————
—— o~ — ——
3 3 e on a A 0 e DO 0
U
00 0

34 Dr. Dobb's Journal | www.dd).com | May 2008

<textbox> tags to specify the backgroung
color, padding, and other attributes. With 3
few quick changes to the style sheet, you can
quickly change the look-and-feel of the
application.

Mojax Script

Mojax provides an implementation of
ECMAScript, not unlike ActionScript
(Adobe) or JScript (Microsoft). Example 4
illustrates it being used for an initialization
function.

Another common use of scripting is
within a <method> tag. For example, when
processing key events, you can opt to check
whether a numeric key was pressed:

<method name="onKeyPressed">
if (event.isNumeric() == true)
{

}
</method>

The uses of script within Mojax are many
and varied. For instance, you could embed a
short script within a <screen> tag as follows
to display a debug message to the develop-
ment environment console when the user
selects the right softkey:

<screen id="mainScreen"

layout="vertical"
onRightSoftkey="if (varx > 10)
debug(a€-varx: &€~ + varx);™>

e

</screen>

Data Persistence

The Cache is a globally accessible object
that provides a means to persist data across
invocations of a mobile application. The
Cache object is a collection of properties,
stored as name-values pairs. Properties of
the Cache are set and retrieved using dot
notation:

Cache.address = "2114 Bigelow Ave"

The Cache is limited by available storage
space on the device, so it's important to be
judicious in deciding what to cache. Also,
cachingis on a per moblet basis; that is, each
moblet has its own Cache so there are n0
worries about one moblet overwriting
another’s cached content.

Preloading and Caching
Mojax can preload images during applic®
tion startup via the <resource> tag:

<resource url="Images/zillow.gif"
persist="true"/>

The persist property is optional in the
<resource> tag. However, the advantage of
setting persist to true is that once the image
is downloaded, it is stored on the device;
thus, on startup of the application next time
around, the image is available.

HTTP, XML,
and XSLT

Given the nature of mobile devices and their
ability to communication over the air, many
Mojax applications access remote resources.
The <httprequest> tag is for content types
accessible via HTTP. Listing Four (available
online) presents the httprequest for the sam-
ple application. The url property is set to
match the format for calling the Zillow prop-
erty details API. The async property is set to
true, enabling the request to be completed
in the background.

I apply an XSLT filter (Listing Five; avail-
able online) to the XML response to tailor
the data specifically for the application. A
side-effect of using the filter is reducing
network traffic to only the information
needed, thus improving application per-
formance. :

The bulk of the interesting code regard-
ing the HTTP request is inside the <method>
tag onLoaded, which is called once the
request has completed. The response from
the HTTP request is used to create two
XPath expressions for accessing the
returned XML.

For completeness, it's important to note
that Mojax currently supports XML, JSON,
images, and Mojax script as the supported
data types through an HTTP request.

Creating Objects

Using Prototypes

Prototypes are a powerful concept for
encapsulating common code into reusable
classes. Within Mojax, the <prototype> tag
is the equivalent of the prototype object in
ECMAScript. One common use of a proto-
type within Mojax apps is for managing
softkeys. Notice in Example 5 how the pro-
totype extends the Box object, which is a
logical choice as this object is designed
specifically as a container for other visual

elements. Attributes are defined, one for
each softkey, left and right. Two <textbox>
tags are defined, one for each label to be
associated with the left and right keys. Once
the prototype is defined, you can use the
object as you would any other Mojax tag.
For example, the code below shows a
<screen> tag definition that declares a
<softkeys> tag used to associate the text
“Exit” with the left softkey, and the text
“Search” with the right.

<screen id="mainScreen" layout=
"vertical"
onLeftSoftkey="exit()"
onRightSoftkey="show(searchScreen)">

<softkeys left=
"Exit" right="Search"/>
</screen>

Referring back to Example 5, notice that
inside the <attribute> tag I referenced the
<textbox> tags using the IDs assigned to the
textbox tags; for example, this.lefttext.value.
When you define a <softkeys> tag, an event
is generated for each attribute defined in
the tag. For example, left="Exit" generates a
call to the attribute tag within the prototype
definition with the name left, which sets the
value of the first textbox to Exit and sets its
visible property to true. The same logic
applies for the right="Search” definition,
setting the value and visible properties of
the object.

The reason for the visible property in the
prototype definition is to allow use of a <sofi-
key> tag, which has just one key definition.
In other words, you may want to enable just
one softkey for a screen:

<screen id="anotherScreen"
layout="vertical"
onLeftSoftkey="

show(mainScreen)">

<softkeys left="Back"/>
</screen>

By definition, the textboxes in the proto-
type are not visible; thus, just one label
(Back) is shown on the device display.

In Listing Two, you see the reference to
a <propertydetail> tag. Figure 1 shows the
device output when using this tag, which
displays the property information
returned for the Zillow API. In Listing Four
(available online) the variable property-
XML was assigned the value of the XPath
expression:

EMBEDDED

DATABASE
ENGINES

NN i
IF IT’S FAST IT’'S

RAIMA

Highest Performance Disk and
In-memory Embedded Database

Fault tolerant and un-matched
reliability with both data replication

| and mirroring.

Solve complex data management
problems through the network
model.

Full interoperability with backend
systems through SQL.

80+ supported platforms, and we’ll
add yours!

Reduce costs with our extensive
development tools and utilities.

Multiple products allow future
scalability without change.

Resource constrained to enterprise
applications.

Highest quality products with 25
years of successful deployment.

Download a FREE development kit
and see what 20,000 other devel-
opers rave about!

b‘i?d:tep
TECHNOLOGY
http://www.birdstep.com/database

americas@birdstep.com
+1 206 748 5353

May 2008 | www.dd).com | Dr. Dobb’s Journal 35

Core Technology MoJAX: MOBILE AJAX FRAMEWORK

propertyXML =
xpath(response#/response/result);
In the <propertydetail> tag, this variable
is accessed to dynamically bind the results of
the XML response to the textboxes on the
main screen. Using bind, the content of the
screen is automatically bound to the current

value of the XML response, which allowsthe | Mojax extends the concepts that drive

application to dynamically update its con- . : ; /
ents based on the results retumed fom | - AJ@X t€Chnology to mobile applications

Zillow.

Conclusion

Mojax extends the concepts that drive Ajax
technology to mobile applications. Using
JavaScript, CSS, and XML/XSLT, you can
develop mobile applications for a range of
devices and platforms, with one code base.
In approximately 325 lines of code, I creat-
ed a cross-platform application that
accesses a remote API over HTTP and
dynamically binds the returned informa-
tion to visual elements on a mobile device
display. bos

High-Speed for Real-Time applications

Built-In custom Property Editors

Automatic and Custom Sizing. No Restrictive Bitmaps

Look and Feel of Real Hardware

Includes * Switches, Gauges, Sliders, Led’s, Led Bar, Led Spiral,
Integer/Binary/Hexadecimal Displays, Tanks, Valves, Motors,
LCD Matrix, Spectrum Display, Percenl and Pie Graph,
Odometers, Analog Clock, Image Display, Rotation Display, and
Mode Combo Box.

Plot Contro|

High-Speed for Real-Time applications

Unlimited Number of Channels & Axes

Full Customizable External Toolbar

Legends, Tables, Limits, Labels, Annotations, Cursors

Gradient Backgrounds

Log Files and Data Export and Import

Save images to BMP, PNG, JPEG, TIF, GIF and EMF

Many built in channel types i Tracy, Trace-XY, Bar, Bubble, Fill, Bi-Fil
Digital, Differential and Sweep _Interval (EKG)

.Net - .Net .Net

ActiveX & VCL ActiveX & VCL ActiveX alx'l
¢ 28 Controls ¢ 55 Controls {i Abatlle o Ploffing : Scientific, A% A * 56 Controls -

* Basic I/0 Controls « Basic & Advanced I/O Controls Engineering, Strip-Chart, * Basic & Advanced I/O Controls
Digital, EKG, and more... plus Plotting

Single Developer : $559 Single Developer : $1099 Single Developer : $859 Single Developer 1 $1699
Additional Developer : $189 Additional Developer : $379 Additional Developer : $289 Addifional Developer : $579

IOCORT

36 Dr. Dobb's Journal | www.dd).com | May 2008

www.locomp.com 888-599-2929 +1-407-226-3456 7081 Grand National Drive Suite 112, Orlando, FL 33'(\; :

